Podivej - tady máš aspoň obrázky jak to funguje a kde procházej osy.
Příloha:
osy.gif [ 14.82 KiB | Zobrazeno 12156 krát ]
A tady jak funguje výškovka a vyvažování....engliš davaš, tak aj s textem
Příloha:
trim.gif [ 22.95 KiB | Zobrazeno 12156 krát ]
Příloha:
trim1.gif [ 24.55 KiB | Zobrazeno 12156 krát ]
Airplanes are subject to an assortment of aerodynamic forces. Some try to pitch the nose up; others try to pitch it down. Engine power, weight placement, and lift are just a few of these forces. What does this mean to you? Well, if the airplane wants to pitch forward, you can't sit there pulling back on the joystick for the entire flight.
Applying continuous pressure on the control wheel to maintain pitch attitude means your arms would tire quickly (your personal trainer would be proud of you, but I wouldn't). Fortunately, airplanes have something known as a trim tab to take the pressure off the control wheel (and off the pilot!). Let's look at how the trim tab works, and then we'll talk about how to use it.How Trim Tabs Work
A trim tab is a small, moveable surface attached to the main surface you want to control (in this case, it's the elevator). Figure 1-15A shows the trim tab and the trim wheel that's used to change the trim tab's position. In the real airplane, the wheel is usually located between the two front seats or on the lower portion of the instrument panel.
Moving the trim tab creates a slight pressure difference on the end of the control surface to which it's attached. Just enough pressure is created to keep the primary control surface in the desired position without having to hold the control wheel in place. Notice that the trim tab moves in a direction opposite to the primary control surface it affects. If you want the elevator to deflect upward (as if you're pulling back on the wheel in a climb), the trim tab must move down, as shown by Elevator A in Figure 1-15A.
To maintain a downward deflection of the elevator (as if you're in a descent), the trim tab must move upward, as shown by Elevator B in Figure 1-15B.
No a tady máš, proč to drží v zatáčcePříloha:
turn.gif [ 14.35 KiB | Zobrazeno 12156 krát ]
prostě a jednoduše, tek vztlak, kerej tě tahal
JEN nahoru, tak teď táhne do
strany.....jinými slovy se rozdělil na dva vektory (komponenty) jeden náhne éro navrch (ale už trochu míň, jak když letíš rovně, protože vertikální složka se zmenšila na úkor boční)) a ten druhej do strany. Na tom obrázku je to pěkně vidět. Kdyby se točilo tím kniplem dál, tak se to bude furt víc a víc točit resp naklánět. Takže se tomu jen udá poloha a ty vztlakové síly to drží tak jak tomu zadáš. Protože ten vztlak na horu je v té zatáčce ale menší, je třeba to trochu natáhnout. Nicméně u standartních, malých zatáček to celkem nestojí za řeč.